# Thoughts on Surrogate Fuels for Combustion

#### Med Colket

5th Annual Fuel Research Meeting Multi-Agency Coordinating Council for Combustion Research Sandia National Laboratories, Livermore, CA

September 17-20, 2012



## Surrogate Fuels

- Definition
- Purpose
- Selection
- Costs
- Test Sensitivities
- Experience



#### Definition

- Surrogate fuel A mixture of a small set of individual hydrocarbon 'species' or components in a specific mixture ratio that when combined replicate the behavior of a real fuel
- Applications to GT (aero), IGT, Diesel, SI



## Purpose

In the case of a surrogate for combustion....

Primary: For Modeling

We cannot yet capture the combustion characteristics of a real fuel – except for simplified problems in CFD simulations. Lack of accurate kinetic description is likely a contributor to this problem

Capturing the fuel chemistry of a real fuel will remain unachievable for the foreseeable future

Establishing the chemistry os one step towards a new CFD capability

Secondary: For Validation

Proof. There is no guarantee that a surrogate can successfully achieve this goal. Experimental validation is a logical follow-on step

Tertiary: For Sensitivities

Once surrogate is established, sensitivities to changes in the physical or chemical nature of the fuel can be examined



#### Questions?

#### Modeling –

- Can a few components truly simulate real fuel behavior?
- Can a reaction model be constructed that (accurately) simulates the individual components, the surrogate, let alone the real fuel?
- Fuel interaction effects?
- What accuracy level is required?
- How to prove this can work?
- how to establish accuracy requirements?
- How to simplify for practical CFD?

#### Validation –

- Accuracy requirements for experiment?
- Range of data? (P/T, f/a, spray)
- Costs? forces use of solvents and impose complications to kinetic models



## Selection of Surrogates

- No unique solutions
- Targets:
  - Selection of components limited by availability of kinetic models
  - Selection of targets
    - Ideally to match combustion (entire) characteristics
    - Treatment of both physical and chemical dependencies
    - So far done by personal preference....or limitations
- Few robust, well defined methods



#### More Questions

- Can we ensure that matching a few selected targets guarantees matching all combustion characteristics?
- If not what are the limits in accuracy, or inability to match certain behavior?
- What specific targets are needed to match the 'full set'; or a reduced set of combustion characteristics
- Is it acceptable to match a limited set of combustion characteristics? Does everything need to be matched?
- Are there specific characteristics that must be matched? What are they?



## Targets – proposed (for combustion)

- Chemical classes (n-alkanes, i-alkanes, cycloalkanes, aromatics...)
- Chemical groups (-CH2-, -CH3, -iC4H9, C7H7-, C6H11-, .....)
- TSI
- Ave MW
- CN, Ignition
- Boiling point (T10, T50, T90)
- H/C
- Premixed/Nonpremixed Extinction
- Liquid density
- Viscosity, surface tension
- **.** . . . . . .
- Various combinations thereof
- Interdependency of properties?
- Mixing rules?????

Relationship between Smoke Number and Hydrogen Content



Relationship is not universal



## Costs – Astronomical for High MW Pure Fuels

## Catalogue Prices for 99% Purity





Solvents are the only real option for validation!

### Sensitivities

#### Solvents/Surrogates can explore contrasting physical and chemical changes

|                  |                                                     | JP-5 (petroleum) | HRJ-5<br>(Camelina) | Sasol<br>IPK | Shell GTL                                                       | Linpar 1416                                                       | L-142                                                        | L-210                                               |
|------------------|-----------------------------------------------------|------------------|---------------------|--------------|-----------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------|
| JP-5 (p          | etroleum)                                           | (petroleum)      | (Garriellila)       |              | Onen OTE                                                        | Linpui 1410                                                       | L 172                                                        | LZIO                                                |
| HRJ-5 (Camelina) |                                                     |                  |                     |              |                                                                 |                                                                   |                                                              |                                                     |
| Sasol<br>IPK     | Primarily iso-<br>alkanes, some<br>cyclo, C9-C14    |                  |                     |              | Similar MW (C10),<br>different chemistry<br>(role of n-alkanes) |                                                                   | Similar MW (C10),<br>different chemistry<br>(iso vs. cyclo)  | Similar chemistry,<br>different MW (C10<br>vs. C14) |
| Shell<br>GTL     | isoalkanes and<br>normal<br>alkanes, C9-<br>C12     |                  |                     |              |                                                                 | Similar chemistry<br>(not exact),<br>different MW<br>(C10 vs C14) | Similar MW (C10),<br>different chemistry<br>(Cyclo vs. norm) |                                                     |
| Linpar<br>1416   | n-alkanes, C14-<br>C16                              |                  |                     |              |                                                                 |                                                                   | Different chemistry, different MW                            | Similar MW (C14),<br>different chemistry            |
| L-142            | Cycloalkanes,<br>and some<br>isoalkanes, C8-<br>C13 |                  |                     |              |                                                                 |                                                                   |                                                              | Different MW (C10 vs C14) with simla chemistry      |
| L-210            | Isoalkanes and<br>some<br>cycloalkanes,<br>C13-C16  |                  |                     |              |                                                                 |                                                                   |                                                              |                                                     |



## Experience

Encouraging results – but we have not closed the loop yet

- MURI
- Utah
- USC
- UTRC
- UC Irvine
- Europe
- UCSD



#### Combustor Validation Data – Fuels

Solvents and synthetic fuels explore contrasting physical/chemical changes

